Abstract

With the development of psychiatric disorder in the current society, abuse of antidepressant drug fluoxetine (FLX) has made such compound an emerging contaminant in natural waters, and causes endocrine systems disturbance on some aquatic species. Herein, an efficient advanced oxidation process (AOP), electron beam irradiation was carried out to investigate the decomposition characteristics of such novel environmental pollutant, including the effects of initial concentration, pH, radical scavengers and anions. The results showed that FLX degradation followed pseudo-first-order kinetics. The degradation rate and dose constant decreased with increasing initial FLX concentration; and G-values elevated with the increase of initial concentration but reduced with increase of absorbed dose. Acidic condition was more conducive to FLX destruction than neutral and alkaline. The radical scavenger experiments indicated OH was the main reactive species for the decomposition of FLX, while the reductive species e-aq and H played an adjuvant role. The presence of anions slightly decreased or even no impact on FLX degradation rate. Various water matrices influenced degradation processes of FLX. Experimental results suggested radiolytic degradation showed the best performance in pure water rather than natural water no matter with filtration or not. Moreover, with the occurrence of defluorination and dealkylation during degradation process, some organic and inorganic intermediates were detected, and the possible degradation mechanisms and pathways of FLX were proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call