Abstract

Irradiation can be used for the preservation of chickpea protein as it can destroy microorganisms, bacteria, virus, or insects that might be present. However, irradiation may provoke oxidative stress, and therefore modify the functionality and nutritional value of chickpea protein. In order to study the effects of irradiation on the physicochemical properties and digestion behaviour of chickpea protein, chickpea protein concentrate (CPC) was treated with electron beam irradiation (EBI) at doses of 5, 10, 15, and 20 kGy. After irradiation, protein solubility first increased at 10 kGy and 15 kGy, and then decreased at the higher dose of 20 kGy. This was supported by SDS-PAGE, where the intensity of major protein bands first increased and then decreased. Increased doses of EBI generally led to greater oxidative modification of proteins in CPC, indicated by reduced sulfhydryls and increased carbonyls. In addition, the protein structure was modified by EBI as shown by Fourier transform infrared spectroscopy analysis, where α-helix generally decreased, and β-sheet increased. Although the protein digestibility was not significantly affected by EBI, the peptidomic analysis of the digests revealed significant differences among CPC irradiated with varying doses. A total of 337 peptides were identified from CPC irradiated with 0 kGy, 10 kGy, and 20 kGy, with 18 overlapping peptides and 60, 29, and 40 peptides specific to the groups of 0, 10, and 20 kGy respectively. Theoretical calculation showed that the distribution of peptide length, hydrophobicity, net charge, and C-terminal residues were affected by irradiation. The 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity showed a marginal decrease with an increasing dose of irradiation. In conclusion, EBI led to oxidative modification and structural changes in chickpea protein, which subsequently affected the physicochemical properties of peptides obtained from in-vitro digestion of CPC, despite similar digestibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call