Abstract

Controlling the size and shape of nanopores in two-dimensional materials is a key challenge in applications such as DNA sequencing, sieving, and quantum emission in artificial atoms. We here experimentally and theoretically investigate triangular vacancies in (unconventional) Bernal-stacked AB-h-BN formed using a high-energy electron beam. Due to the geometric configuration of AB-h-BN, triangular pores in different layers are aligned, and their sizes are controlled by the duration of the electron irradiation. Interlayer covalent bonding at the vacancy edge is not favored, as opposed to what occurs in the more common AA′-stacked BN. A variety of monolayer, concentric, and bilayer pores in the bilayer AB-h-BN are observed in high-resolution transmission electron microscopy and characterized using ab initio simulations. Bilayer pores in AB-h-BN are commonly formed and grow without breaking the bilayer character. Nanopores in AB-h-BN exhibit a wide range of electronic properties, ranging from half-metallic to non-magnetic and magnetic semiconductors. Therefore, because of the controllability of the pore size, the electronic structure is also highly controllable in these systems and can potentially be tuned for particular applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.