Abstract

AbstractA novel synthesis of silica nanowires and silica/carbon heterostructures by electron beam irradiation on porous silicon films was investigated. The method allows us to monitor the growth process in real time at atomic scales. Depending on the electron dose we obtain nanowires with diameters in the range of 15-49nm and lengths up to 500 nm. We found that the adequate electron dose was between 0.01 Acm-2 and 2 Acm-2. Additional electron dose causes plastic and failure deformations in the silica nanowires. A growth model consistent with our findings is presented that involves the flow of mass from the substrate to the nanowire driven by the local electric fields. Heterostructures showing a nanopalm-like shape are obtained after exposing the silica nanowire to poor vacuum conditions in which carbon aggregation from the surrounding gas is promoted by the local electric fields enhanced at the tip of the silica wires.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.