Abstract

In-rich InGaN/GaN nanowires (NWs) are key optoelectronic materials, which can close the green gap of the light emitting diodes and can be used in efficient high-bandgap solar cells for integration in tandem devices. Realization of these devices requires as a first step the optimization of the NW structure and their electrical parameters. Electron Beam Induced Current (EBIC) microscopy is well suited to probe nanoscale devices with a high resolution and to extract the material parameters. Here, we analyze the electrical properties of axial GaN and InGaN/GaN n-p and p-n junction NWs using EBIC microscopy. III-N NWs were grown on Si(111) substrates by molecular beam epitaxy using Mg as a p-dopant and Si as an n-dopant. The growth conditions were adjusted to optimize the doping order with an abrupt axial junction without a parasitic radial overgrowth. From the EBIC analysis of the GaN p-n junctions, the doping level and the minorities carrier diffusion lengths were extracted. Next, a p-GaN/i-InGaN/n-GaN junction containing an In-rich InGaN segment [1] was grown yielding a flat and strong EBIC signal in the InGaN NW portion. NW arrays were then contacted and their behavior under visible light was analyzed. [1] Morassi et al., Cryst. Growth Des., 2545, 18 2018

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.