Abstract

Norovirus remains the leading cause of foodborne illness, but there is no effective intervention to eliminate viral contaminants in fresh produce. Murine norovirus 1 (MNV-1) was inoculated in either 100 ml of liquid or 100 g of food. The inactivation of MNV-1 by electron-beam (e-beam), or high-energy electrons, at varying doses was measured in model systems (phosphate-buffered saline [PBS], Dulbecco's modified Eagle's medium [DMEM]) or from fresh foods (shredded cabbage, diced strawberries). E-beam was applied at a current of 1.5 mA, with doses of 0, 2, 4, 6, 8, 10, and 12 kGy. The surviving viral titer was determined by plaque assays in RAW 264.7 cells. In PBS and DMEM, e-beam at 0 and 2 kGy provided less than a 1-log reduction of virus. At doses of 4, 6, 8, 10, and 12 kGy, viral inactivation in PBS ranged from 2.37 to 6.40 log, while in DMEM inactivation ranged from 1.40 to 3.59 log. Irradiation of inoculated cabbage showed up to a 1-log reduction at 4 kGy, and less than a 3-log reduction at 12 kGy. On strawberries, less than a 1-log reduction occurred at doses up to 6 kGy, with a maximum reduction of 2.21 log at 12 kGy. These results suggest that a food matrix might provide increased survival for viruses. In foods, noroviruses are difficult to inactivate because of the protective effect of the food matrix, their small sizes, and their highly stable viral capsid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.