Abstract

In this paper, the excitations of surface plasmon polaritons (SPPs) by both perpendicular and parallel electron beam are investigated. The results of analytical theory and numerical calculation show that the mechanisms of these two excitations are essentially different, and the behavior and properties of SPPs in metal structures strongly depend on the methods of excitation. For the perpendicular excitation, SPPs contain plenty of frequency components, propagate with attenuation and are always accompanied with the transition radiation. Whereas for parallel excitation, SPPs waves are coherent, tunable, propagating without attenuation and the transition radiation does not occur. We also show that there are two modes for the parallel excited SPPs on the metal films and they all can be excited efficiently by the parallel moving electron beam. And the operating frequency of SPPs can be tuned in a large frequency range by adjusting the beam energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.