Abstract

BackgroundTo develop biocompatible bony regeneration materials, allogenic, xenogenic and synthetic bones have been irradiated by an electron beam to change the basic structures of their inorganic materials. The optimal electron beam energy and individual dose have not been established for maximizing the bony regeneration capacity in electron beam irradiated bone.ResultsCommercial products consisting of four allogenic bones, six xenogenic bones, and six synthetic bones were used in this study. We used 1.0-MeV and 2.0 MeV linear accelerators (power: 100 KW, pressure; 115 kPa, temperature; -30 to 120°C, sensor sensitivity: 0.1-1.2 mV/kPa, generating power sensitivity: 44.75 mV/kPa, supply voltage: 50.25 V), and a microtrone with different individual irradiation doses such as 60 kGy and 120 kGy. Additional in vitro analyses were performed by elementary analysis using field emission scanning electron microscopy (FE-SEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and confocal laser scanning microscopy (CLSM). In vivo clinical, radiographic, and micro-computed tomography (Micro-CT) with bone marrow density (BMD) analysis was performed in 8- and 16-week-old Spraque-Dawley rats with calvarial defect grafts.ConclusionsElectron beam irradiation of bony substitutes has four main effects: the cross-linking of biphasic calcium phosphate bony apatite, chain-scissioning, the induction of rheological changes, and microbiological sterilization. These novel results and conclusions are the effects of electron beam irradiation.

Highlights

  • To develop biocompatible bony regeneration materials, allogenic, xenogenic and synthetic bones have been irradiated by an electron beam to change the basic structures of their inorganic materials

  • Preparation of electron beam-irradiated bone To prepare the electron beam-irradiated bone, we first obtained commercially available samples consisting of four allogenic bones, six xenogenic bones, and six synthetic bones

  • Each bone material was divided into six specimens for the in vitro study and graft procedures, so a total of 1,152 specimens were irradiated by the electron beam (Figure 2)

Read more

Summary

Introduction

To develop biocompatible bony regeneration materials, allogenic, xenogenic and synthetic bones have been irradiated by an electron beam to change the basic structures of their inorganic materials. The optimal electron beam energy and individual dose have not been established for maximizing the bony regeneration capacity in electron beam irradiated bone. Electron beam irradiation (EBI), or electron beam processing, is a process that uses electrons, usually of high energy, to treat objects for purposes such as sterilization and the cross-linking of polymers. During our recent investigations of the effec of EBI on maxillofacial reconstructive polymer materials, we have tried to identify gross changes in the substitute bone materials. To advance the study of applying biomaterial in hard-tissue reconstruction, this article is intended to suggest new possibilities for electron beam treatment of bone graft materials

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.