Abstract

It is well-known that electron-beam irradiation within the electron microscope can induce a variety of surface reactions. In the particular case of maximally-valent transition-metal oxides (TMO), which are susceptible to electron-stimulated desorption (ESD) of oxygen, it is apparent that the final reduced product depends, amongst other things, upon the ionicity of the original oxide, the energy and current density of the incident electrons, and the residual microscope vacuum. For example, when TMO are irradiated in a high-resolution electron microscope (HREM) at current densities of 5-50 A/cm2, epitaxial layers of the monoxide phase are found. In contrast, when these oxides are exposed to the extreme current density probe of an EM equipped with a field emission gun (FEG), the irradiated area has been reported to develop either holes or regions almost completely depleted of oxygen. ’ In this paper, we describe the responses of three TMO (WO3, V2O5 and TiO2) when irradiated by the focussed probe of a Philips 400ST FEG TEM, also equipped with a Gatan 666 Parallel Electron Energy Loss Spectrometer (P-EELS). The multi-channel analyzer of the spectrometer was modified to take advantage of the extremely rapid acquisition capabilities of the P-EELS to obtain time-resolved spectra of the oxides during the irradiation period. After irradiation, the specimens were immediately removed to a JEM-4000EX HREM for imaging of the damaged regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.