Abstract
We study the effect of chromospheric bombardment by an electron beam during solar flares. Using a semi-empirical flare model, we investigate energy balance at temperature minimum level and in the upper photosphere. We show that non-thermal hydrogen ionization (i.e., due to the electrons of the beam) leads to an increase of chromospheric hydrogen continuum emission, H− population, and absorption of photospheric and chromospheric continuum radiation. So, the upper photosphere is radiatively heated by chromospheric continuum radiation produced by the beam. The effect of hydrogen ionization is an enhanced white-light emission both at chromospheric and photospheric level, due to Paschen and H− continua emission, respectively. We then obtain white-light contrasts compatible with observations, obviously showing the link between white-light flares and atmospheric bombardment by electron beams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.