Abstract

We compare the dislocation substructure within macrozone and non-macrozone regions of hot-rolled Ti–6Al–4 V. Hough-based and cross-correlation-based analysis of electron backscatter diffraction (EBSD) patterns are used to establish the grain orientations and intra-granular misorientations, respectively. The set of geometrically necessary dislocations (GNDs) that support measured lattice curvatures and minimize the total GND line energy are calculated. The GND content in the macrozone is approximately twice that in the non-macrozone region, and 〈a〉 GNDs are present at densities ∼10 times higher than 〈c + a〉 GNDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.