Abstract

Characterization of microstructures containing small grains or low-angle grain boundaries by electron backscattered diffraction (EBSD) is limited by the spatial and angular resolution limits of the technique. It was found that the best effective spatial resolution (60 nm) for aluminium alloys in a tungsten-filament scanning electron microscope (SEM) was obtained for an intermediate probe current which provided a compromise between pattern quality and specimen interaction volume. The same specimens and EBSD equipment when used with a field-emission gun SEM showed an improvement in spatial resolution by a factor of 2-3. For characterizing low-angle boundary microstructures, the precision of determining relative orientations is a limiting factor. It was found that the orientation noise was directly related to the probe current and this was interpreted in terms of the effect of probe current on the quality of the diffraction patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.