Abstract

Two experimental techniques, electron swarm and electron beam, have been applied to the problem of electron attachment to POCl3, with results indicating that there is a competition between dissociation of the resonant POCl3-* state and collisional stabilization of the parent anion. In the electron beam experiment at zero electron energy, the fragment ion POCl2- is the dominant ion product of attachment (96%), under single-collision conditions. Small amounts (approximately 2% each) of POCl3- and Cl- were observed. POCl3- and POCl2- ion products were observed only at zero electron energy, but higher-energy resonances were recorded for POCl-, Cl-, and Cl2- ion products. In the electron swarm experiment, which was carried out in 0.4-7 Torr of He buffer gas, the parent anion branching ratio increased significantly with pressure and decreased with temperature. The electron attachment rate constant at 297 K was measured to be (2.5+/-0.6)x10(-7) cm3 s(-1), with ion products POCl2- (71%) and POCl3- (29%) in 1 Torr of He gas. The rate constant decreased as the electron temperature was increased above 1500 K. Theory is developed for (a) the unimolecular dissociation of the nascent POCl3-* and (b) a stepladder collisional stabilization mechanism using the average energy transferred per collision as a parameter. These ideas were then used to model the experimental data. The modeling showed that D0 o(Cl-POCl2-) and EA(POCl3) must be the same within +/-0.03 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call