Abstract

Fluorodeoxyglucose (FDG) is a glucose derivative with fluorine at the C2 position. The molecule containing the radioactive F-18 isotope is well known from its application in positron emission tomography as a radiotracer in tumor examination. In the stable form with the F-19 isotope, FDG was proposed as a potential radiosensitizer. Since reduction processes may be relevant in radiosensitization, we investigated low-energy electron attachment to FDG with a crossed electron-molecule beam experiment and with quantum chemical calculations as well as molecular dynamics at elevated temperatures to reveal statistical dissociation. We experimentally find that the susceptibility of FDG to low-energy electrons is relatively low. The calculations indicate that upon attachment of an electron with a kinetic energy of ∼0eV, only dipole-bound states are accessible, which agrees with the weak ion yields observed in the experiment. The temporary negative ions formed upon electron attachment to FDG may decay by a large variety of dissociation reactions. The major fragmentation channels include H2O, HF, and H2 dissociation, accompanied by ring opening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call