Abstract

Electron correlation in nonsequential double ionization (NSDI) of molecules by counter-rotating two-color circularly polarized (TCCP) fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that the two electrons from NSDI of molecules in counter-rotating TCCP fields show strong angular correlation and the angular correlation behavior sensitively depends on the internuclear distance. With the internuclear distance increasing, the dominant behavior of electron pairs evolves from correlation to anti-correlation. It leaves a clear imprint on the ion momentum distributions, which exhibit an inverted Y-shape distribution at a small internuclear distance and a triangle-shape distribution at a large internuclear distance. Back analysis indicates that the asymmetric electron energy sharing by soft recollision and longer time delay of double ionization are responsible for more anti-correlated emissions at large internuclear distances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call