Abstract

We compute both electron and phonon transmissions in thin disordered silicon nanowires (SiNWs). Our atomistic approach is based on tight-binding and empirical potential descriptions of the electronic and phononic systems, respectively. Surface disorder is modeled by introducing surface silicon vacancies. It is shown that the average phonon and electron transmissions through long SiNWs containing many vacancies can be accurately estimated from the scattering properties of the isolated vacancies using a recently proposed averaging method [Markussen et al., Phys. Rev. Lett. 99, 076803 (2007)]. We apply this averaging method to surface disordered SiNWs in the diameter range of 1--3 nm to compute the thermoelectric figure of merit ZT. It is found that the phonon transmission is affected more by the vacancies than the electronic transmission leading to an increased thermoelectric performance of disordered wires, in qualitative agreement with recent experiments. The largest $\text{ZT}>3$ is found in strongly disordered $⟨111⟩$-oriented wires with a diameter of 2 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.