Abstract
We studied femtosecond laser-induced desorption of CO from Ru(0001) using intense near-infrared and visible femtosecond laser pulses. We find a pronounced wavelength dependence with a factor 3–4 higher desorption yield at comparable fluence when desorption is induced via 400nm light, compared to 800nm and attribute this difference to the difference in penetration depth of the incident light. All our data can be described using empirical friction-modeling to determine the desorption mechanism with the same mechanism for both wavelengths. We find that both hot electrons and phonons contribute to the desorption process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.