Abstract

We study theoretically the spin dynamics of antiferromagnetic molecular rings, such as the ferric wheel Fe10. For a single nuclear or impurity spin coupled to one of the electron spins of the ring, we calculate nuclear and electronic spin correlation functions and show that nuclear magnetic resonance (NMR) and electron spin resonance (ESR) techniques can be used to detect coherent tunneling of the Néel vector in these rings. The location of the NMR/ESR resonances gives the tunnel splitting and its linewidth an upper bound on the decoherence rate of the electron spin dynamics. We illustrate the experimental feasibility of our proposal with estimates for Fe10 molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.