Abstract

We present a model for electron and neutrino scattering off nucleons and nuclei focusing on the quasielastic and resonance region. The lepton-nucleon reaction is described within a relativistic formalism that includes, besides quasielastic scattering, the excitation of 13 ${N}^{*}$ and \ensuremath{\Delta} resonances and a nonresonant single-pion background. Recent electron scattering data are used for the state-of-the-art parametrizations of the vector form factors; the axial couplings are determined via partial conservation of the axial current and, in the case of the \ensuremath{\Delta} resonance, the axial form factor is refitted using neutrino-scattering data. Scattering off nuclei is treated within the Giessen Boltzmann-Uehling-Uhlenbeck framework (GiBUU), which takes into account various nuclear effects: the local density approximation for the nuclear ground state, mean-field potentials, and in-medium spectral functions. Results for inclusive scattering off oxygen are presented and, in the case of electron-induced reactions, compared with experimental data and other models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call