Abstract
Fully non-linear kinetic simulations of electron plasma and ion acoustic waves (IAWs) have been carried out with a new multi-species, parallelized Vlasov code. The numerical implementation of the Vlasov model and the methods used to compute the wave frequency are described in detail. For the first time, the nonlinear frequency of IAWs, combining the contributions from electron and ion kinetic effects and from harmonic generation, has been calculated and compared to Vlasov results. Excellent agreement of theory with simulation results is shown at all amplitudes, harmonic generation being an essential component at large amplitudes. For IAWs, the positive frequency shift from trapped electrons is confirmed and is dominant for the effective electron-to-ion temperature ratio, Z Te/Ti ≳ 10 with Z as the charge state. Furthermore, numerical results demonstrate unambiguously the dependence [R. L. Dewar, Phys. Fluids 15, 712 (1972)] of the kinetic shifts on details of the distribution of the trapped particles, which depends in turn on the conditions under which the waves were generated. The trapped particle fractions and energy distributions are derived and, upon inclusion of harmonic effects, shown to agree with the simulation results, completing a consistent picture. Fluid models of the wave evolution are considered but prove unable to capture essential details of the kinetic simulations. Detrapping by collisions and sideloss is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.