Abstract

The kinetics of electron and hole accumulation in metal-oxide-nitride-oxide-semiconductor structures is studied. Experimental data are compared with a theoretical model that takes into account tunnel injection, electron and hole capture by traps in amorphous silicon nitride SiNx, and trap ionization. Agreement between experimental and calculated data is obtained for the bandgap width E g = 8.0 eV of amorphous SiO2, which corresponds to the barrier for holes Φh = 3.8 eV at the Si/SiO2 interface. The tunneling effective masses for holes in SiO2 and SiNx are estimated at m h * ≈ (0.4–0.5)m 0. The parameters of electron and hole traps in SiNx are determined within the phonon-coupled trap model: the optical energy W opt = 2.6 eV and the thermal energy W T = 1.3 eV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.