Abstract

Radiophotoluminescence (RPL) is a radiation effect, and materials exhibiting RPL can be used in dosimeters. In this study, we observed remarkable RPL in Cu-doped aluminoborosilicate and silica glasses upon their exposure to 60Co γ-rays. The RPL intensity increased proportionally with the irradiation dose up to several hundreds of grays and then saturated beyond a certain dose level. An equation was derived theoretically to express the relationship between the RPL intensity and irradiation dose based on the RPL mechanism, in which copper ions, Cu2+ and Cu+, capture electrons and holes, generated by the irradiation, respectively, resulting in a change in the valence. The equation fitted well with the experimental results, providing two parameters for the equation. These parameters are associated with the saturation dose level and sensitivity, which are important for the application of materials to dosimeters. These parameters were discussed based on electron and hole capture processes in the RPL mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call