Abstract

Neutral and anionic 13-atom aluminum clusters are studied with high-level, fully ab initio methods: second-order perturbation theory (MP2) and coupled cluster theory with singles, doubles, and perturbative triples (CCSD(T)). Energies and vibrational frequencies are reported for icosahedral and decahedral isomers, and are compared with density functional theory results. At the MP2 level of theory, with all of the basis sets employed, the icosahedral structure is energetically favored over the decahedral structure for both the neutral and anionic Al(13) clusters. Hessian calculations imply that only the icosahedral structures are potential energy minima. The CCSD(T)/aug-cc-pVTZ adiabatic electron affinity of Al(13) is found to be 3.57 eV, in excellent agreement with experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.