Abstract

By choosing a simple triphenylamine electron donor, we herein compare the influence of electron acceptors benzothiadiazole benzoic acid (BTBA) and cyanoacrylic acid (CA), on energy levels, light absorption, and dynamics of excited-state evolution and electron injection. DFT and time-dependent DFT calculations disclosed remarkable intramolecular conformational changes for the excited states of these two donor-acceptor dyes. Photoinduced dihedral angle variation occurs to the triphenylamine unit in the CA dye and backbone planarization happens to conjugated aromatic blocks in the BTBA dye. Femtosecond spectroscopic measurements suggested the crucial role of having a long excited-state lifetime in maintaining a high electron-injection yield because a reduced driving force for a low energy-gap dye can result in slower electron-injection dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call