Abstract

Data from the Cassini spacecraft identify strong electron acceleration as the solar wind approaches the magnetosphere of Saturn. This so-called bow shock unexpectedly occurs even when the magnetic field is roughly parallel to the shock-surface normal. Knowledge of the magnetic dependence of electron acceleration will aid understanding of supernova remnants. Electrons can be accelerated to ultrarelativistic energies at strong (high Mach number) collisionless shock waves that form when stellar debris rapidly expands after a supernova1,2,3. Collisionless shock waves also form in the flow of particles from the Sun (the solar wind), and extensive spacecraft observations have established that electron acceleration at these shocks is effectively absent whenever the upstream magnetic field is roughly parallel to the shock-surface normal (quasi-parallel conditions)4,5,6,7,8. However, it is unclear whether this magnetic dependence of electron acceleration also applies to the far stronger shocks around young supernova remnants, where local magnetic conditions are poorly understood. Here we present Cassini spacecraft observations of an unusually strong solar system shock wave (Saturn’s bow shock) where significant local electron acceleration has been confirmed under quasi-parallel magnetic conditions for the first time, contradicting the established magnetic dependence of electron acceleration at solar system shocks4,5,6,7,8. Furthermore, the acceleration led to electrons at relativistic energies (about megaelectronvolt), comparable to the highest energies ever attributed to shock acceleration in the solar wind4. These observations suggest that at high Mach numbers, such as those of young supernova remnant shocks, quasi-parallel shocks become considerably more effective electron accelerators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call