Abstract

Laser acceleration by radially polarized laser beams takes advantage of the strong longitudinal electric field component at the beam centre. When the laser field intensity is sufficiently high, it can push electrons initially at rest at the beam waist outside the Rayleigh zone and accelerate them to relativistic velocities along the laser axis. To obtain the best results in terms of electron dynamics and energy estimation, we suggest that the electrons could be accelerated to a very high energy level by the radially polarized laser pulse. The additionally used azimuthal magnetic field helps to retain the electron energy during acceleration. In this paper, we describe the electron energy scales with laser power and we explain how the laser beam parameter and the magnetic field both can be optimized for maximal acceleration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.