Abstract

We present analytical studies of electron acceleration in the low-density preplasma of a thin solid target by an intense femtosecond laser pulse. Electrons in the preplasma are trapped and accelerated by the ponderomotive force as well as the wake field. Two-dimensional particle-in-cell simulations show that when the laser pulse is stopped by the target, electrons trapped in the laser pules can be extracted and move forward inertially. The energetic electron bunch in the bubble is unaffected by the reflected pulse and passes through the target with small energy spread and emittance. There is an optimal preplasma density for the generation of the monoenergetic electron bunch if a laser pulse is given. The maximum electron energy is inverse proportion to the preplasma density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call