Abstract
Personal positioning has been playing an important role in context awareness and navigation. Pedestrian dead reckoning (PDR) solution is a positioning technology used where the global positioning system (GPS) signal is not available or its signal is mightily attenuated or reflected by constructions nearby, such as inside the buildings or in GPS degraded areas such as urban city, basement. A traditional PDR solution employs a multisensor unit (integrating accelerometer, gyroscope, digital compass, barometer, etc.) to detect step occurrences, as well as to estimate the stride length. In our pilot research, we proposed a novel electromyography (EMG)-based method to fulfill that task and obtained satisfying PDR results. In this paper, a further attempt is made to investigate the feasibility of using EMG sensors in sensing muscle activities to detect the corresponding locomotion patterns, and as a result, a new approach, which recognizes different locomotion patterns using EMG signals and constructs stride length models according to the recognition results, is then proposed to improve the positioning accuracy and robustness of the EMG-based PDR solution by adapting the stride length model into different locomotion patterns. The experimental results demonstrate that EMG-based pattern recognition of four motions (walking, running, walking upstairs, walking downstairs) achieve an error rate of less than 2%. Combined with locomotion pattern recognition, the proposed EMG-based PDR solution yield a position deviation of less than 5 m within the whole distance of 404 m in a simulated indoor/outdoor field test. The proposed method is proven to be effective and practical in sensing context information, including both the user's activities and locations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.