Abstract

ObjectiveTo evaluate muscle activity in the arms of adult stroke survivors with limited or no arm movement during acute care. DesignProspective observational study. SettingAcute care regional stroke center. ParticipantsWe recruited adults (N=21) who had a stroke within the previous 5 days who were admitted to a level 1 trauma hospital and had a National Institutes of Health Stroke Scale score >1 for arm function at the time of recruitment. A total of 21 adults (13 men, 8 women) with an average age of 60±15 years were recruited an average of 3±1 days after their stroke. Eleven (7 men, 4 women; age, 56±11y) had no observable or palpable arm muscle activity (Manual Muscle Test [MMT]=0) and 10 (6 men, 4 women; age, 64±1y) had detectable activity (MMT>0). InterventionsDual mode sensors (electromyography and accelerometry) were placed on the anterior deltoid, biceps, triceps, wrist extensors, and wrist flexors of the impaired arm. Main Outcome MeasuresThe number of muscle contractions, as well as average duration, amplitude, and co-contraction patterns were evaluated for each participant. ResultsMuscle contractions were observed in all 5 muscles for all participants using electromyography (EMG) recordings. Contractions were easily identified from 30 minutes of monitoring for participants with an MMT >0, but up to 3 hours of monitoring was required for participants with an MMT=0 to detect contractions in all 5 muscles during standard care. Only the wrist extensors demonstrated significantly larger amplitude contractions for participants with an MMT>0 than those with an MMT=0. Co-contraction was rare, involving less than 10% of contractions. Co-contraction of 2 muscles most commonly aligned with the flexor synergy pattern commonly observed after stroke. For participants with an MMT=0, the number of contractions and maximum amplitude were moderately correlated with MMT scores at follow-up. ConclusionsMuscle activity was detected with surface EMG recordings during standard acute care, even for individuals with no observable activity by clinical examination. Wearable sensors may be useful for monitoring early muscle activity and movement after stroke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.