Abstract

Underground coal miners who work in low-seam mines frequently handle materials in kneeling or squatting postures. To assess quadriceps and hamstring muscle demands in these postures, nine participants performed lateral load transfers in kneeling and squatting postures, during which electromyographic (EMG) data were collected. EMG activity was obtained at five points throughout the transfer for three quadriceps muscles and two hamstring muscles from each thigh. ANOVA results indicated that EMG data for nine of 10 thigh muscles were affected by an interaction between posture and angular position of the load lifted (p < 0.001). Muscles of the right thigh were most active during the lifting portion of the task (lifting a block from the participant's right) and activity decreased as the block was transferred to the left. Left thigh muscles showed the opposite pattern. EMG activity for the majority of thigh muscles was affected by the size of the base of support provided by different postures, with lower EMG activity observed with a larger base of support and increased activity in postures where base of support was reduced (p < 0.05). Thigh EMG activity was lowest in postures with fully flexed knees, which may explain worker preference for this posture. However, such postures are also associated with increased risk of meniscal damage. Statement of Relevance:Kneeling and squatting postures are sometimes used for manual lifting activities, but are associated with increased knee injury risk. This paper examines the EMG responses of knee extensors/flexors to lifting in these postures, discusses the impact of posture and kneepads on muscle recruitment and explores the implications for work in such postures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call