Abstract
The simultaneous modulation of joint torque and stiffness enables humans to perform large repertoires of movements, while versatilely adapting to external mechanical demands. Multi-muscle force control is key for joint torque and stiffness modulation. However, the inability to directly measure muscle force in the intact moving human prevents understanding how muscle force causally links to joint torque and stiffness. Joint stiffness is predominantly estimated via joint perturbation-based experiments in combination with system identification techniques. However, these techniques provide joint-level stiffness estimations with no causal link to the underlying muscle forces. Moreover, the need for joint perturbations limits the generalizability and applicability to study natural movements. Here, we present an electromyography (EMG)-driven musculoskeletal modeling framework that can be calibrated to match reference joint torque and stiffness profiles simultaneously via a multi-term objective function. EMG-driven models calibrated on <2 s of reference torque and stiffness data could blindly estimate reference profiles across 100 s of data not used for calibration. Model calibrations using an objective function comprising torque and stiffness terms always provided less feasible solutions than an objective function comprising solely a torque term, thereby reducing the space of feasible muscle–tendon parameters. Results also showed the proposed framework’s ability to estimate joint stiffness in unperturbed conditions, while capturing differences against stiffness profiles derived during perturbed conditions. The proposed framework may provide new ways for studying causal relationships between muscle force and joint torque and stiffness during movements in interaction with the environment, with broad implications across biomechanics, rehabilitation and robotics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.