Abstract

This study examined neuromuscular responses of the biceps brachii (BB) for concentric and eccentric muscle actions during bilateral, dynamic constant external resistance (DCER), reciprocal forearm flexions and extensions to failure at high (80% 1 repetition maximum [1RM]) and low (30% 1RM) relative loads. Nine women completed 1RM testing and repetitions to failure (RTF) at 30 and 80% 1RM. Electromyographic (EMG) and mechanomyographic (MMG) amplitude (AMP) and mean power frequency (MPF) signals were measured from the BB. Analyses included repeated measures ANOVAs (p < 0.05) and post-hoc pairwise comparisons with Bonferroni corrected alpha of p < 0.008 and p < 0.01 for between and within factor pairwise comparisons, respectively. EMG AMP and MPF were significantly greater for concentric than eccentric muscle actions, regardless of load or time. However, time course of change analysis revealed parallel increases in EMG AMP for concentric and eccentric muscle actions during the RTF trials at 30% 1RM, but no change at 80% 1RM. There were significant increases in MMG AMP during concentric muscle actions, but decreases or no change during eccentric muscle actions. EMG and MMG MPF decreased over time, regardless of muscle action type and loading condition. The greater EMG AMP and MPF values during concentric compared to eccentric muscle actions may reflect the difference in the efficiency characteristic of these muscle actions. The neuromuscular responses suggested that fatigue may be mediated by recruitment of additional motor units with lower firing rates during concentric muscle actions, and changes in motor unit synchronization during eccentric muscle actions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call