Abstract

The Cu pillar is a thick under bump metallurgy (UBM) structure developed based on the consideration of alleviating current crowding in a flip-chip solder joint in operation conditions. We present in this work electromigration reliability and morphologies of Cu pillar flip-chip solder joints formed by joining Ti/Cu/Ni UBM with largely elongated Cu at ~62 mum onto Cu substrate pad metallization through the Sn-3Ag-0.5Cu solder alloy. Three test conditions that controlled averaged current densities in solder joints and ambient temperatures were considered: 10 kA/cm2 at 150degC,10 kA/cm2 at 160degC, and 15 kA/cm2 at 125degC.Electromigration reliability of this particular solder joint turns out to be much enhanced compared to a conventional solder joint with thin-film-stack UBM. Cross-sectional examinations of solder joints upon failure indicate that cracks formed in (Cu,Ni)6Sn5 or Cu6Sn5 intermetallic compounds (IMCs) near the cathode side of the solder joint. Moreover, the ~52 mum thick Sn-Ag-Cu solder after long-term current stressing has turned into a combination of ~80% Cu-Ni-Sn IMC and ~20% Sn-rich phases, which appeared in the form of large aggregates that in general distributed on the cathode side of the solder joint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call