Abstract

Electromigration in Sn30Ag05Cu flip chip solder joints was investigated under a current density of the order of 104 A/cm2. The transfer of atoms or vacancies and the formation of Joule heating induced by electromigration were studies in terms of microstructural evolution. The formation of pancake-type void at the interface between solder and intermetallic compound was dominated by current concentration and the directional transfer of vacancies induced by electromigration. Series of voids were also found at the interface between Ni(P) finishes and solder joint. The area of voids at substrate side are less than that at chip side. The flux of Cu atoms in the pad has the same direction as the electron flux. The transfer of Cu atoms from pad to solder joint led to the formation of large areas of intermetallic compound in solder joint, and the amount of intermetallic compound increased along the direction of electron flux.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.