Abstract

The electromigration behavior of Al films, deposited by the sputter gun (varian s-gun) and ranging in alloy content from 0.5% Cu to 2% Si has been evaluated for 2.5 cm long, 1–4 μm wide conducting stripes. An inverse square dependence of lifetime on current density has been verified. Furthermore, it has been shown that film composition affects the electromigration lifetime through its contribution to the grain structure, in that, an increase in lifetime accompanies an increase in grain size and a decrease in spread of the grain size distribution. Increasing the Si content is detrimental, since it results in a reduction in grain size. Failures occur by the random growth of subsurface voids along the conductor length. The s-gun films have a completely random orientation in contrast to electron beam evaporated Al-0.5% Cu, which exhibits a prominent 〈111〉 fiber texture. This preferred grain orientation in the case of the latter is held responsible for its superior lifetime in comparison to the sputtered films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.