Abstract
Electromigration (EM) failures of flip-chip solder joints due to void growth, resulting from miniaturization of joint structure, have recently been reported. In addition, growth behavior of electromigration voids in solder joints has not been clarified. It is therefore difficult to predict electromigration failure life. A novel method for simulating growth behavior of an electromigration void in a solder joint was developed. This method was applied to predict failure lives of a conventional solder joint and a copper-cored solder joint. According to the simulation results, the failure life of the copper-cored solder joint is more than three times longer than that of the conventional joint. Moreover, failure life of each joint was measured by electromigration test, and the void shape was observed by synchrotron-radiation X-ray microtomography provided at SPring-8. The good agreement between the predicted growth behaviors and the measured and observed behaviors demonstrate the validity of the developed simulation method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.