Abstract
A 65 mn test chip to study electromigration (EM) events in integrated circuit power grids was taped-out and successfully tested. A $9\times 9$ grid was implemented using M3 and M4 metal layers which was stressed under constant current and constant voltage modes. On-chip poly heaters were employed to raise the DUT temperature to 350°C without damaging the peripheral circuitry and chip package. A bank of transmission gates based on IO transistors were used to tap out the M3 and M4 voltages at each intersection point of the power grid. Using the test structure, we could directly observe for the first time, the voltage drop map across the entire power grid. Subtle changes on the monitored voltage map uncovered mechanical stress dependent failure locations as well as self-healing due to redundant current paths. The EM failure rate and order of failure locations were also analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Device and Materials Reliability
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.