Abstract

The bonding technique for high density Flip Chip(F.C.) packages requires a low temperature and a low stress process to achieve high reliability of the micro joining. Sn-Bi solder has been noted as a low temperature bonding material. Electromigration behavior of Sn-57wt%Bi flip chip interconnection with Cu post bumps was investigated. The flip chip bumps used for this experiments consisted of Cu post formed with plating and Sn-57wt%Bi solder. Two types of under bump metal(UBM) of organic substrate were studied, that is, electroless Ni(6μm)/Au(0.5μm) on Cu pad and Cu pad. Electron flow to induce the electro-migration was from organic substrate side (Cu pad) to chip side (Cu post) with current density of 40000A/cm2 at 125 degree C. At both types of the UBM, Bi migrated and accumulated to the anode side (Cu post) and Sn migrated to the cathode side (substrate pad). Each interconnect resistance has increased to about 25% and 46% within 100 hours, respectively. However, after more than 3000 hours, they were stabilized. With Ni/Au UBM pad, Cu3Sn/Cu6Sn5 intermetallic compounds (IMCs) were formed at the Cu bump side. And under the Bi layer Cu6Sn5/Ni-Sn compounds were formed. But we didn’t observe the failure like cracks or voids at the Ni layer. With Cu pad, only Cu3Sn IMC at the Cu bump side and under the Bi layer Cu6Sn5/Cu3Sn compounds were formed after 4000 hours. Although the voids were observed at Cu3Sn/Cu interface, good electrical connection was obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.