Abstract
This study presents a method for the selective determination of Hg(II) using electromembrane extraction (EME), followed by square wave anodic stripping voltammetry (SWASV), using a gold nanoparticle-modified glassy carbon electrode, (AuNP/GCE). By applying an electrical potential of typically 60 V for 12 min through a thin supported liquid membrane (1-octanol), Hg(II) ions are extracted from a donor phase (i.e., the sample solution) to an acidic acceptor solution (15 μL) placed in the lumen of a hollow fiber. The influences of experimental parameters during EME were optimized using face-centered central composite design. The calibration plot, established at a working voltage of 0.55 V (vs. Ag/AgCl), extends from 0.2 to 10 μg.L−1 of Hg(II). The limit of detection, at a signal to noise ratio of 3, is 0.01 μg.L−1 and the relative standard deviations (for 5 replicate determinations at 3 concentration levels) are between 7.5 and 8.7 %. The method was successfully applied to the determination of Hg(II) in spiked real water samples to give recoveries ranging from 89 to 97 %. The results were validated by cold vapor atomic absorption spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.