Abstract

The results of studying the electromechanical response of thin-walled viscoelastic piezoactive elements under harmonic loading are generalized. The nonlinear electrothermoviscoelastic problem for a harmonically deformed body is formulated in a simplified form with regard for the facts that the mechanical, thermal, and electric fields are coupled, the material is physically nonlinear, and its properties depend on temperature. Classical and refined electromechanical models of single-layer and multilayer shells and plates under general and harmonic loading are reviewed. The models consider that the electromechanical characteristics of the material depend on temperature and physical and geometrical nonlinearities. Methods for solving nonlinear coupled electrothermoviscoelastic problems are discussed. Analytical and numerical solutions are given to specific quasistatic and dynamic electrothermoviscoelastic problems for thin-walled elements such as rods, plates, and shells of various shapes under harmonic electric loading. The effect of dissipation, the temperature dependence of the material properties, and physical and geometrical nonlinearities on the harmonic and parametric vibrations and stability of piezoelectric elements is studied

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.