Abstract

Semi-crystalline polymers are widely used in manufacturing drivers and capacitors. The two opposite surfaces of semi-crystalline polymer are coated with flexible electrodes and are applied with voltage. Because of static electricity field, semi-crystalline polymer film thins down along the thickness direction while extends along the horizontal direction. Reduction of thickness will lead to a higher electric field, and the positive feedback system has been sustained. When the electric field reaches the critical breakdown of electric field of semi-crystalline polymers, electromechanical coupling system of semi-crystalline polymers becomes unstable. Based on the method on electromechanical instability of semi-crystalline polymers under non-linear field, we use exponential model with two material constants to analyze the electromechanical stability of semi-crystalline polymers. Then, we obtain the relationship among the true critical stress, the true critical electric field of different semi-crystalline polymers and stretching rate. The numerical results show that, when the material ratio C ( K 2 = CK 1, K 1 and K 2 are the parameters determined by the experimental stress–strain relationship) of the two material constants increases, the true critical electric field and electromechanical stability of semi-crystalline polymers will decrease. In addition, when C = 0, our result coincides with previous results. It is proved that pre-stretching load can increase the critical breakdown voltage of the polymer. Our conclusions may provide the guidance in designing material and manufacturing semi-crystalline polymer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.