Abstract

Rapid point-of-care tests for infectious diseases are essential, especially in pandemic conditions. We have developed a point-of-care electromechanical device to detect SARS-CoV-2 viral RNA using the reverse-transcription loop-mediated isothermal amplification (RT-LAMP) principle. The developed device can detect SARS-CoV-2 viral RNA down to 103 copies/mL and from a low amount of sample volumes (2 μL) in less than an hour of standalone operation without the need for professional labor and equipment. Integrated Peltier elements in the device keep the sample at a constant temperature, and an integrated camera allows automated monitoring of LAMP reaction in a stirring sample by using colorimetric analysis of unfocused sample images in the hue/saturation/value color space. This palm-fitting, portable and low-cost device does not require a fully focused sample image for analysis, and the operation could be stopped automatically through image analysis when the positive test results are obtained. Hence, viral infections can be detected with the portable device produced without the need for long, expensive, and labor-intensive tests and equipment, which can make the viral tests disseminated at the point-of-care.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.