Abstract

Electromechanical laminated composites with piezoelectric phases are increasingly being explored as multifunctional materials providing energy conversion between electric and mechanical energies. The current work explores thus-far undocumented combined microstructural effects of amplitude-to-wavelength ratio, volume fraction, poling direction of piezoelectric phases on both the homogenized properties and localized stress/electric field distributions in multilayered configurations under fully coupled electro-mechanical loading. In particular, the Multiphysics Finite-Volume Direct Averaging Micromechanics (FVDAM) and its counterpart, an in-house micromechanical multiphysics finite-element model, are utilized to investigate the homogenized and localized responses of wavy multilayered piezoelectric BaTiO3/PZT-7A architectures. These two methods generate highly agreeable results. Moreover, we critically examine the convergence of the finite-volume and finite element-based approaches via the Average Stress Theorem and Average Electric Displacement Theorem. The comparison shows the finite volume-based approach possesses a better numerical convergence. This study illustrates the FVDAM’s ability toward the analysis and design of engineered multilayered piezoelectric materials with wavy architecture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call