Abstract
Aligned carbon nanotube (CNT) forests filled with a dehydrated polymer electrolyte are used to fabricate flexible solid state supercapacitors (SSCs) for multifunctional structural-electronic applications. Local stiffness measurements on the composite electrodes determined through nanoindentation showed an 80% increase over the neat solid polymer electrolyte matrix. Electrochemical properties are monitored as a function of average tensile strain in the SSCs. Galvanostatic charge-discharge tests with in situ microtensile testing on SSCs are used to show a 10% increase in the specific capacitance through the elastic region of the composite. The increase in capacitance is partly attributed to the enhanced double layer interaction that results from the partial alignment of the polymer electrolyte chains at the electrode-electrolyte interface. When soaked in 1 m sulfuric acid, the specific capacitance of the CNT-polymer electrolyte reached approximately 72 F g–1 at 60 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.