Abstract

Langasite and gallium phosphate are shown to exhibit piezoelectrically stimulated bulk acoustic waves up to at least 1,400 and 900 °C, respectively. Most critical issues are stoichiometry changes due to, e.g. low oxygen partial pressures, and high losses. Therefore, the paper discusses the atomistic transport and defect chemistry of those crystals and correlates them with the electromechanical properties. First, the defect chemistry of langasite is investigated. As long as the atmosphere is nearly hydrogen-free, the transport of charge carriers is governed by oxygen movement. A dominant role of hydrogen is observed in hydrogenous atmospheres. Based on the developed defect model, donors are expected to suppress the oxygen vacancy concentration and, thereby, the loss in langasite. The prediction is proven by niobium doping and found to be valid. A one-dimensional physical model of thickness shear mode resonators is summarized. The analysis of the resonance spectra showed that the loss of the resonators can be described satisfactorily by mechanical and electrical contributions expressed as effective viscosity and bulk conductivity, respectively. The mechanical loss in langasite is significantly impacted by the electrical conductivity due to the piezoelectric coupling. The effect of the piezoelectric coupling on the loss is negligible for gallium phosphate since it shows an extremely low electrical conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.