Abstract

The development of new drugs is a lengthy process, while the observation of serious side effects, such as cardiotoxicity, can result in the drug to be withdrawn even after development, leading to heavy burden on human health and social economy. To assess the drug cardiotoxicity, the electrical and mechanical properties of cardiomyocytes are increasingly being used to investigate the mechanisms and potential toxicity of drugs. Conventional non-invasive and label-free recording strategies are not well suited to record the integrated electromechanical signals from the single cell in a high-throughput manner, whereas label-based recordings strategies suffer from phototoxicity and drug side effects, precluding their long-time detection. In this study, we established a new multimodal microelectrode biosensing system to achieve the simultaneous and dynamic interrogation of electromechanical signals from multisite single cardiomyocytes. This multimodal device can detect subtle changes in the electromechanical signals induced by ion channel drugs during the excitation-contraction coupling of cardiomyocytes. The use of electromechanical integrated single cell signals for drug assessment was compared with commercial drug assays, and our multimodal microelectrode biosensing system can afford record electromechanical integrated signals as well as efficiently identify the effects of ion channel-blocking drugs on the electrical and mechanical properties of cardiomyocytes. Our multimodal microelectrode biosensing system is a potential valuable platform in the fields of cardiology and pharmacology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call