Abstract

An electromechanical impedance (EMI) based structural health monitoring (SHM) approach is proposed for the localisation of skin-core debonds in composite sandwich structure (CSS). Towards this, laboratory experiments and numerical simulations of EMI in a CSS with core to bottom face-sheet debond have been carried out using a network of piezoelectric transducers (PZTs). The frequency-domain analysis of the registered EMI signals shows that the presence of inter-facial debonds in the CSS significantly influences the conductance magnitudes of the registered EMI data. It was also noticed that the conductance magnitudes of the signals are dependent on the debond-to-PZT distances. In all the study cases, an agreement between the simulation and experimental results is observed. Eventually, a simulated SHM approach is proposed that uses a debond detection algorithm to calculate the changes in conductance magnitudes to effectively locate such debonds in CSS. The study is further extended for the detection of debonds at different locations in the CSS, including a debond located at the edge to assess the potential of the proposed SHM approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.