Abstract
Activation of the atrial renin-angiotensin system plays an important role in the pathophysiology of atrial fibrillation (AF). The pulmonary vein (PV) and left atrium (LA) are important trigger and substrate for the genesis of AF. We investigate the effects of a direct renin inhibitor, aliskiren, on the PV and LA arrhythmogenic activity and the underlying electromechanical mechanisms. Conventional microelectrodes were used to record action potentials and contractility in isolated rabbit PVs and LA tissues before and after the administration of aliskiren (0.1, 1, 3 and 10μM). By the whole-cell patch clamp and indo-1 fluorimetric ratio techniques, ionic currents and intracellular calcium transient were studied in isolated single PV and LA cardiomyocyte before and after the administration of aliskiren (3μM). Aliskiren (0.1, 1, 3 and 10μM) reduced PV firing rate in a concentration-dependent manner (6, 10, 14 and 17%) and decreased PV diastolic tension, which could be attenuated in the presence of 100μM L-N(G)-Nitroarginine Methyl Ester (L-NAME). Aliskiren induced PV automatic rhythm exit block causing slow and irregular PV activity with variable pauses. Aliskiren increased PV and LA contractility, which could be abolished by pre-treating with 0.1μM ryanodine. Aliskiren (3μM) decreased L-type calcium currents, but increased reverse-mode of Na( + )/Ca(2+ ) exchanger currents, intracellular calcium transients, and sarcoplasmic reticulum calcium content in PV and LA cardiomyocytes. Pretreatment with renin, losartan or angiotensin II did not alter the effect of aliskiren on sarcolemmal calcium flux. In conclusion, aliskiren reduces PV arrhythmogenic activity with a direct vasodilatory property and has a positive inotropic effect on cardiomyocytes. These findings may reveal the anti-arrhythmic and anti-heart failure potentials of aliskiren.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.