Abstract

In this paper, an electromechanical coupled dynamic equation of a micro beam under an electrostatic force as well as under an electromechanical coupled force is presented. The linearization of above dynamic equation is made, allowing the equation to be divided into a linear dynamic equation for dynamic displacement and a static balance equation for static displacement. Using the balance equation, the changes of the voltage along with displacement are studied. It is shown that there is a critical voltage at which the micro beam will buckle. From the linear dynamic equation, natural frequencies and vibration modes of the micro beam, and its forced responses to voltage excitation are derived. The results show that the natural frequencies and vibrating magnitudes of the micro beam are affected by mechanical and electric parameters. Smaller beam length and voltage as well as larger beam thickness and clearance should be selected in order to obtain smaller vibrating magnitudes. It is also shown that for higher vibration modes, more positions of the peak dynamic displacements occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.