Abstract

Background:Direct current cardioversion (DCCV) is an established treatment to acutely convert atrial fibrillation (AF) to normal sinus rhythm. Yet, more than 70% of patients revert to AF shortly thereafter. Electromechanical Cycle Length Mapping (ECLM) is a high framerate, spectral analysis technique shown to non-invasively characterize electromechanical activation in paced canines and re-entrant flutter patients. This study assesses ECLM feasibility to map and quantify atrial arrhythmic electromechanical activation rates and inform on 1-day and 1-month DCCV response. Methods:Forty-five subjects (30 AF; 15 healthy sinus rhythm (SR) controls) underwent transthoracic ECLM in four standard apical 2D echocardiographic views. AF patients were imaged within 1 h pre- and post-DCCV. 3D-rendered atrial ECLM cycle length (CL) maps and spatial CL histograms were generated. CL dispersion and percentage of arrhythmic CLs≤333ms across the entire atrial myocardium were computed transmurally. ECLM results were subsequently used as indicators of DCCV success. Results:ECLM successfully confirmed the electrical atrial activation rates in 100% of healthy subjects (R2=0.96). In AF, ECLM maps localized the irregular activation rates pre-DCCV and confirmed successful post-DCCV with immediate reduction or elimination. ECLM metrics successfully distinguished DCCV 1-day and 1-month responders from non-responders, while pre-DCCV ECLM values independently predicted AF recurrence within 1-month post-DCCV. Conclusions:ECLM can characterize electromechanical activation rates in AF, quantify their extent, and identify and predict short- and long-term AF recurrence. ELCM constitutes thus a noninvasive arrhythmia imaging modality that can aid clinicians in simultaneous AF severity quantification, prediction of AF DCCV response, and personalized treatment planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.